On the Physiology of Amoeboid Movement

Author:

PANTIN C. F. A.1

Affiliation:

1. Marine Biological Laboratory, Plymouth

Abstract

1. The effect of temperature on the velocity of locomotion of two species of marine limax Amoebae has been determined. In both the velocity rises with the temperature. It is reversibly inhibited just below 0° C. There is a low optimum temperature (type A, 22° C. to 25° C. ; type B, 20° C.) above which the velocity falls rapidly; at higher temperatures activity is inhibited irreversibly. 2. Evidence is brought to show that the fall of velocity above the optimum is due to a destructive effect on the mechanism of amoeboid activity. It is shown that were this effect absent, the velocity would probably continue to rise with the temperature in a normal manner. 3. The temperature coefficient of the velocity is similar to that of ciliary activity and many other biological processes. 4. The rate of amoeboid activity is probably not controlled by the velocity of some simple chemical process the energy of which is directly converted into work done, because the temperature coefficient of the rate of doing work is high and variable and unlike that usually met with in biological processes. 5. The rate of amoeboid activity appears to be controlled by the rate at which the protoplasm changes its state (sol gel). This provides a rational explanation of the fact that it is the velocity and not the rate of doing work which varies with the temperature as do other biological processes. 6. In view of conclusions arrived at in another paper,16 it is possible that the value of the temperature coefficient indicates that the rate at which protoplasm can change its state is controlled by a chemical reaction.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3