Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration

Author:

Pan Fong Cheng1,Bankaitis Eric D.1,Boyer Daniel1,Xu Xiaobo2,Van de Casteele Mark3,Magnuson Mark A.4,Heimberg Harry3,Wright Christopher V. E.1

Affiliation:

1. Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

2. Department of Medicine, Childrens Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Enders 922, Boston, MA 02115, USA.

3. Diabetes Research Center, Vrije Universiteit Brussels, Laarbeeklaan 103 D2, Brussels, B1090 Belgium.

4. Vanderbilt University Center for Stem Cell Biology, 9465 MRB IV, 2213 Garland Avenue, Nashville, TN 37232-0494, USA.

Abstract

Pancreatic multipotent progenitor cells (MPCs) produce acinar, endocrine and duct cells during organogenesis, but their existence and location in the mature organ remain contentious. We used inducible lineage-tracing from the MPC-instructive gene Ptf1a to define systematically in mice the switch of Ptf1a+ MPCs to unipotent proacinar competence during the secondary transition, their rapid decline during organogenesis, and absence from the mature organ. Between E11.5 and E15.5, we describe tip epithelium heterogeneity, suggesting that putative Ptf1a+Sox9+Hnf1β+ MPCs are intermingled with Ptf1aHISox9LO proacinar progenitors. In the adult, pancreatic duct ligation (PDL) caused facultative reactivation of multipotency factors (Sox9 and Hnf1β) in Ptf1a+ acini, which undergo rapid reprogramming to duct cells and longer-term reprogramming to endocrine cells, including insulin+ β-cells that are mature by the criteria of producing Pdx1HI, Nkx6.1+ and MafA+. These Ptf1a lineage-derived endocrine/β-cells are likely formed via Ck19+/Hnf1β+/Sox9+ ductal and Ngn3+ endocrine progenitor intermediates. Acinar to endocrine/β-cell transdifferentiation was enhanced by combining PDL with pharmacological elimination of pre-existing β-cells. Thus, we show that acinar cells, without exogenously introduced factors, can regain aspects of embryonic multipotentiality under injury, and convert into mature β-cells.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3