Cyp26 enzymes are required to balance the cardiac and vascular lineages within the anterior lateral plate mesoderm

Author:

Rydeen Ariel B.12,Waxman Joshua S.1

Affiliation:

1. The Heart Institute, Molecular Cardiovascular Biology and Developmental Biology Divisions, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA

2. Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA

Abstract

Normal heart development requires appropriate levels of retinoic acid (RA) signaling. RA levels in embryos are dampened by Cyp26 enzymes, which metabolize RA into easily degraded derivatives. Loss of Cyp26 function in humans is associated with numerous developmental syndromes that include cardiovascular defects. Although previous studies have shown that Cyp26-deficient vertebrate models also have cardiovascular defects, the mechanisms underlying these defects are not understood. Here, we found that in zebrafish, two Cyp26 enzymes, Cyp26a1 and Cyp26c1, are expressed in the anterior lateral plate mesoderm (ALPM) and predominantly overlap with vascular progenitors (VPs). Although singular knockdown of Cyp26a1 or Cyp26c1 does not overtly affect cardiovascular development, double Cyp26a1 and Cyp26c1 (referred to here as Cyp26)-deficient embryos have increased atrial cells and reduced cranial vasculature cells. Examining the ALPM using lineage tracing indicated that in Cyp26-deficient embryos the myocardial progenitor field contains excess atrial progenitors and is shifted anteriorly into a region that normally solely gives rise to VPs. Although Cyp26 expression partially overlaps with VPs in the ALPM, we found that Cyp26 enzymes largely act cell non-autonomously to promote appropriate cardiovascular development. Our results suggest that localized expression of Cyp26 enzymes cell non-autonomously defines the boundaries between the cardiac and VP fields within the ALPM through regulating RA levels, which ensures a proper balance of myocardial and endothelial lineages. Our study provides novel insight into the earliest consequences of Cyp26 deficiency that underlie cardiovascular malformations in vertebrate embryos.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3