A computational fluid dynamics study of tadpole swimming

Author:

Liu H,Wassersug R,Kawachi K

Abstract

The hydrodynamics and undulating propulsion of tadpoles were studied using a newly developed two-dimensional computational fluid dynamics (CFD) modeling method. The mechanism of thrust generation associated with the flow patterns during swimming is discussed. Our CFD analysis shows that the kinematics of tadpoles is specifically matched to their special shape and produces a jet-stream propulsion with high propulsive efficiency, as high as that achieved by teleost fishes. Investigation of the effect of Reynolds number indicates that the Froude efficiency increases with increasing Reynolds number with no ceiling in generating the jet-stream propulsion. Further studies using tadpole- and fish-shaped models with hindlimbs added to their body profiles reveal that the tadpole shape ­ a globose head with a tapered tail and hindlimbs at the base of the tail ­ allows tadpoles, but not fish, to develop hindlimbs with very little handicap on propulsion. The shapes and kinematics of tadpoles appear to be specially adapted to the requirement of these organisms to transform into frogs.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3