Axial muscle function during lizard locomotion

Author:

Ritter D

Abstract

It was recently reported that the epaxial muscles of a lizard, Varanus salvator, function to stabilize the trunk during locomotion, and it was suggested that this stabilizing role may be a shared derived feature of amniotes. This result was unexpected because it had previously been assumed that the epaxial muscles of lizards function to produce lateral bending during locomotion and that only in mammals and birds were the epaxial muscles active in stabilizing the trunk. These results and the inferences made from them lead to two questions. (1) Is the pattern of epaxial muscle activity observed in V. salvator representative of a basal lizard condition or is it a derived condition that evolved within lizards? (2) If the epaxial muscles do not produce lateral bending, which muscles do carry out this function? These questions were addressed by collecting synchronous electromyographic (EMG) and kinematic data from two lizard species during walking and running. EMG data were collected from the epaxial muscles of a lizard species from a basal clade, Iguana iguana, in order to address the first question. EMG data were collected from the hypaxial muscles of both Iguana iguana and Varanus salvator to address the second question. The timing of epaxial muscle activity in Iguana iguana relative to the kinematics of limb support and lateral trunk bending is similar to that observed in Varanus salvator, a finding that supports the hypothesis that the epaxial muscles stabilize the trunk during locomotion in lizards and that this stabilizing role is a basal feature of lizards. Therefore, a stabilizing function of the epaxial muscles is most parsimoniously interpreted as a basal amniote feature. In both Iguana iguana and Varanus salvator, the activity of two of the hypaxial muscles, the external oblique and rectus abdominis, is appropriately timed for the production of lateral bending. This indicates that elements of the hypaxial musculature, not the epaxial musculature, are the primary lateral bending muscles of lizards.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3