Structural correlates of speed and endurance in skeletal muscle: the rattlesnake tailshaker muscle

Author:

Schaeffer P,Conley K,Lindstedt S

Abstract

The western diamondback rattlesnake Crotalus atrox can rattle its tail continuously for hours at frequencies approaching 90 Hz. We examined the basis of these fast sustainable contractions using electromyography, data on oxygen uptake and the quantitative ultrastructure of the tailshaker muscle complex. The tailshaker muscle has no apparent unique structures; rather, the relative proportions of the structures common to all skeletal muscles appear to be present (1) to minimize activation, contraction and relaxation times via an extremely high volume density of sarcoplasmic reticulum (26 %) as well as, (2) to maximize ATP resysnthesis via a high volume density of mitochondria (26 %). The high rate of ATP supply is reflected in the in vivo muscle mass-specific oxygen uptake of this group of muscles which, at 585 ml O2 kg-1 min-1 during rattling at 30 °C body temperature, exceeds that reported for other ectotherm and many endotherm muscles. Since the change in oxygen uptake paralleled that of the rattling frequency over the range of measured body temperatures, there was a nearly constant O2 cost per muscle contraction (0.139±0.016 µl O2 g-1). Electromyo-graphic analysis suggests that each of the six muscles that make up the shaker complex may be a single motor unit. Finally, the maximum rate of mitochondrial oxygen uptake is similar to that of various mammals, a hummingbird, a lizard, an anuran amphibian and of isolated mitochondria (at 10 000-40 000 molecules O2 s-1 µm2 of cristae surface area, when normalized to 30 °C), suggesting a shared principle of design of the inner mitochondrial membrane among the vertebrates.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3