Design of the oxygen and substrate pathways. II. Defining the upper limits of carbohydrate and fat oxidation.

Author:

Roberts T J1,Weber J M1,Hoppeler H1,Weibel E R1,Taylor C R1

Affiliation:

1. Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.

Abstract

This paper quantifies maximal flows of carbohydrates and lipids through the pathways supplying the mitochondria. Maximal flow rates are the main functional parameter used in testing the principle of symmorphosis, which states that structural capacities are quantitatively matched to functional demand. Only under rate-limiting conditions will all of the structural capacity be used. Dogs and goats were compared to obtain large differences in absolute rates. We exercised the animals for long enough to reach steady-state O2 and CO2 exchange rates at intensities eliciting 40%, 60% and 85% of the maximal rate of oxygen consumption (MO2max). We then calculated rates of fat and carbohydrate oxidation from the ratio of CO2 produced to O2 consumed (the respiratory exchange ratio). The dog's Mo2max was more than twice that of the goat (6517 versus 3026 mumol O2 kg-1 min-1). We found the same pattern of fuel selection as a function of exercise intensity in both species, and it appears to be general to mammals. Maximal rates of fat oxidation were reached at 40% exercise intensity, where 77% of the energy was supplied by fat. As exercise intensity increased, all additional energy was supplied by carbohydrates. We conclude that the partitioning of fuel supply to the fat and carbohydrate pathways follows the same pattern in both dogs and goats.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3