Maximum cardiac performance of rainbow trout (Oncorhynchus mykiss) at temperatures approaching their upper lethal limit

Author:

Farrell A,Gamperl A,Hicks J,Shiels H,Jain K

Abstract

Numerous studies have examined the effect of temperature on in vivo and in situ cardiovascular function in trout. However, little information exists on cardiac function at temperatures near the trout's upper lethal limit. This study measured routine and maximum in situ cardiac performance in rainbow trout (Oncorhynchus mykiss) following acclimation to 15, 18 and 22 °C, under conditions of tonic (30 nmol l-1), intermediate (60 nmol l-1) and maximal (200 nmol l-1) adrenergic stimulation. Heart rate increased significantly with both temperature and adrenaline concentration. The Q10 values for heart rate ranged from 1.28 at 30 nmol l-1 adrenaline to 1.36 at 200 nmol l-1 adrenaline. In contrast to heart rate, maximum stroke volume declined by approximately 20 % (from 1.0 to 0.8 ml kg-1) as temperature increased from 15 to 22 °C. This decrease was not alleviated by maximally stimulating the heart with 200 nmol l-1 adrenaline. Because of the equal and opposite effects of increasing temperature on heart rate and stroke volume, maximum cardiac output did not increase between 15 and 22 °C. Maximum power output decreased (by approximately 10-15 %) at all adrenaline concentrations as temperature increased. This reduction reflected a poorer pressure-generating ability at temperatures above 15 °C. These results, in combination with earlier work, suggest (1) that peak cardiac performance occurs around the trout's preferred temperature and well below its upper lethal limit; (2) that the diminished cardiac function concomitant with acclimation to high temperatures was associated with inotropic failure; (3) that Q10 values for cardiac rate functions, other than heart rate per se, have a limited predictive value at temperatures above the trout's preferred temperature; and (4) that heart rate is a poor indicator of cardiac function at temperatures above 15 °C.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3