The role of the N-terminal domain in dimerization and nucleocytoplasmic shuttling of latent STAT3

Author:

Vogt Michael1,Domoszlai Tamas1,Kleshchanok Dzina2,Lehmann Swen2,Schmitt Anne1,Poli Valeria3,Richtering Walter2,Müller-Newen Gerhard1

Affiliation:

1. Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany

2. Institute of Physical Chemistry, RWTH Aachen University, Aachen 52056, Germany

3. Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, University of Turin, Torino 10126, Italy

Abstract

STAT3 is an important transcription factor involved in immunity and cancer. In response to cytokine stimulation, STAT3 becomes phosphorylated on a single tyrosine residue. Tyrosine-phosphorylated STAT3 accumulates in the nucleus, binds to specific DNA response elements and induces gene expression. Unphosphorylated, latent STAT3 shuttles constitutively between cytoplasm and nucleus. We analysed the importance of previously identified putative nuclear localization sequences (NLS) and nuclear export sequences (NES) for nucleocytoplasmic shuttling of latent STAT3 using STAT3-deficient cells reconstituted with fluorescently labelled STAT3 mutants. Mutation of a putative NLS or NES sequence did not impair nucleocytoplasmic shuttling of latent STAT3. We were also interested in the structural requirements for dimerization of unphosphorylated STAT3 and its relevance for nucleocytoplasmic shuttling. By native gel electrophoresis and dual-focus fluorescence correlation spectroscopy (2f-FCS) we identified the N-terminal domain (amino acids 1–125) to be essential for formation of unphosphorylated STAT3 dimers but not for assembly of tyrosine-phosphorylated STAT3 dimers. In resting cells, the monomeric N-terminal deletion mutant (STAT3-ΔNT) shuttles faster between the cytoplasm and nucleus than the wild-type STAT3, indicating that dimer formation is not required for nucleocytoplasmic shuttling of latent STAT3. STAT3-ΔNT becomes phosphorylated and dimerizes in response to interleukin-6 stimulation but, surprisingly, does not accumulate in the nucleus. These results highlight the importance of the N-terminal domain in the formation of unphosphorylated STAT3 dimers and nuclear accumulation of STAT3 upon phosphorylation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3