All rainbow trout (Oncorhynchus mykiss) are not created equal:intra-specific variation in cardiac hypoxia tolerance

Author:

Faust Heather A.1,Gamperl A. Kurt1,Rodnick Kenneth J.2

Affiliation:

1. Department of Biology, Portland State University, PO Box 0751, Portland,OR 97207-0751, USA

2. Department of Biological Sciences, Idaho State University, Pocatello, ID 82309-8007, USA

Abstract

SUMMARYAll of our previous work, and that of other investigators, shows that the trout heart only partially recovers following brief exposure to severe hypoxia or anoxia (i.e. it is hypoxia-sensitive). However, in preliminary studies, we found evidence to suggest that rainbow trout reared at a farm in Oregon (USA)have a significant degree of inherent myocardial hypoxia tolerance. To evaluate whether hearts from these trout are indeed hypoxia-tolerant, and thus to determine whether intra-specific variation in rainbow trout myocardial hypoxia tolerance exists, we measured in situ cardiac function and monitored myoglobin and lactate dehydrogenase (LDH) release (both indices of myocardial damage) in hearts that were exposed to varying durations(10–30 min) of severe hypoxia (PO =5–10 mmHg). There was a strong positive relationship between the duration of severe hypoxia and the degree of post-hypoxic myocardial dysfunction. However, the resulting dysfunction was modest, with hearts exposed to 30 min of severe hypoxia recovering 77% of their initial maximum cardiac output. Furthermore,myoglobin was not detected in the perfusate, and ventricular LDH activity did not vary in response to the duration of severe hypoxia. These data (1)indicate that trout from this farm have extremely hypoxia-tolerant hearts; (2)suggest that considerable intra-specific variation exists in trout myocardial hypoxia tolerance; and (3) provide preliminary evidence that trout hearts are not irreversibly damaged, but are merely `stunned', following brief periods(10–30 min) of severe hypoxia.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3