Affiliation:
1. Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
2. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
3. Beijing 101 middle school, Beijing, China
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression and play roles in a wide range of physiological processes, including ontogenesis. Herein, we discovered a novel microRNA, novel miR-26, which inhibits translation of the phosphofructokinase (PFK) gene by targeting the 3’ untranslated region (UTR) of pfk directly, thereby inhibiting the molting and body length growth of the freshwater shrimp (Neocaridina heteropoda). Lowering expression of the PFK gene by RNA interference (RNAi) led to a longer ecdysis cycle and smaller individuals. This phenotype was mirrored in shrimps injected with novel miR-26 agomirs, but the opposite phenotype occurred in shrimps injected with novel miR-26 antagomirs (i.e., the ecdysis cycle was shortened and body length was increased). After injection of 20-hydroxyecdysone (ecdysone 20E), expression of the novel miR-26 was decreased, while expression of the PFK gene was up-regulated, and the fructose-1,6-diphosphate metabolite of PFK accumulated correspondingly. Furthermore, expression of eIF2 (eukaryotic initiation factor 2) increased under stimulation of fructose-1,6-diphosphate, suggesting that protein synthesis was stimulated during this period. Taken together, our results suggest that the novel miR-26 regulates expression of the PFK gene and thereby mediates the molting and growth of N. heteropoda.
Funder
Ministry of Science and Technology of the People's Republic of China
Tianjin Municipal Education Commission
Tianjin Science and Technology Committee
Tianjin Science and Technology Bureau
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献