Foraging strategy of wasps – optimisation of intake rate or efficiency?

Author:

Kovac Helmut1ORCID,Stabentheiner Anton1,Brodschneider Robert1

Affiliation:

1. Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria

Abstract

In endothermic wasps, foraging is an expensive activity. To maximise the benefit for the colony, wasps can optimise either the intake rate or energetic efficiency of a foraging trip. We investigated the foraging behaviour of Vespine wasps under variable environmental and reward conditions. We trained them to forage for 0.5 molar sucrose solution from an artificial flower in a flow-through respiratory measurement chamber, and simultaneously measured their body temperature using infrared thermography to investigate interactions between thermoregulation and energetics. Measurement of carbon dioxide release (for energetic calculations) and load weight enabled the direct determination of foraging efficiency. An unlimited reward increased the wasps’ energetic effort to increase the suction speed through high body temperatures. With reduced reward (limited flow), when an increased body temperature could not increase suction speed, the wasps decreased their body temperature to reduce the metabolic effort. Solar heat gain was used differently, either to increase body temperature without additional metabolic effort or to save energy. The foraging efficiency was mainly determined by the flow rate, ambient temperature and solar heat gain. In shade, an unlimited sucrose flow and a high ambient temperature yielded the highest energetic benefit. A limited flow reduced foraging efficiency in the shade, but only partly in sunshine. Solar radiation boosted the efficiency at all reward rates. Wasps responded flexibly to varying reward conditions by maximising intake rate at unlimited flow and switching to the optimisation of foraging efficiency when the intake rate could not be enhanced due to a limited flow rate.

Funder

Austrian Science Fund

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3