Molecular mechanisms regulating the establishment of hepatocyte polarity during human hepatic progenitor cell differentiation into a functional hepatocyte-like phenotype

Author:

Hua Mingxi1,Zhang Weitao1,Li Weihong1,Li Xueyang1,Liu Baoqing1,Lu Xin1,Zhang Haiyan1

Affiliation:

1. Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China

Abstract

Summary The correct functioning of hepatocytes requires the establishment and maintenance of hepatocyte polarity. However, the mechanisms regulating the generation of hepatocyte polarity are not completely understood. The differentiation of human fetal hepatic progenitor cells (hFHPCs) into functional hepatocytes provides a powerful in vitro model system for studying the molecular mechanisms governing hepatocyte development. In this study, we used a two-stage differentiation protocol to generate functional polarized hepatocyte-like cells (HLCs) from hFHPCs. Global gene expression profiling was performed on triplicate samples of hFHPCs, immature-HLCs and mature-HLCs. When the differential gene expression was compared based on the differentiation stage, a number of genes were identified that might be essential for establishing and maintaining hepatocyte polarity. These genes include those that encode actin filament-binding protein, protein tyrosine kinase activity molecules, and components of signaling pathways, such as PTK7, PARD3, PRKCI and CDC42. Based on known and predicted protein-protein interactions, the candidate genes were assigned to networks and clustered into functional categories. The expression of several of these genes was confirmed using real-time RT-PCR. By inactivating genes using small interfering RNA, we demonstrated that PTK7 and PARD3 promote hepatic polarity formation and affect F-actin organization. These results provide unique insight into the complex process of polarization during hepatocyte differentiation, indicating key genes and signaling molecules governing hepatocyte differentiation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3