Osmotic and thermal effects on in situ ATPase activity in permeabilized gill epithelial cells of the fish Gillichthys mirabilis

Author:

Kültz D,Somero G N

Abstract

Long-jawed mudsuckers (Gillichthys mirabilis) were acclimated to sea water (SW) at 7 °C, SW at 26 °C or dilute sea water (DSW) at 26 °C for 5 months. Gill cells were isolated and the proportion of mitochondria-rich (MR) cells was determined. The number of cells harvested amounted to 4.7x10(7)±0.6x10(7) to 10.6x10(7)±1.1x10(7) and the yield was between 7.1x10(8)±0.6x10(8) and 10.7x10(8)±1.4x10(8) cells g-1 gill epithelial mass. Cell viability was 96.8±0.4 to 97.8±0.6 %. The number, size and volume of MR cells decreased significantly during DSW acclimation, but did not change during thermal acclimation. The protein content was not influenced by osmotic or thermal acclimation and ranged between 20.0±1.6 and 22.1±1.5 pg cell-1. Using a new method, which is based on the formation of plasma membrane channels by alamethicin, we were able to permeabilize gill cells. For the first time, the Na+/K+-ATPase and H+-ATPase activities of fish gills were determined in intact cells in situ. The activity of both ATPases was dependent on alamethicin concentration (optimum 100 µg mg-1 protein) and on preincubation time (optimum 10 min). The in situ activity of both ATPases was influenced by osmotic, but not thermal, acclimation. A positive linear correlation was found between in situ Na+/K+-ATPase activity and total MR cell volume. However, we show, for the first time, that a negative linear correlation exists between H+-ATPase activity and total MR cell volume, suggesting a localization of H+-ATPase in pavement cells. In permeabilized cells, the activity of both ATPases was 2.6­3.9 times higher than that of crude homogenates and 1.6­2.1 times higher than that of permeabilized homogenate vesicles. We hypothesize that in crude homogenates three-quarters of Na+/K+-ATPase and two-thirds of H+-ATPase activity are not detectable both because of a mixture of inside-out and right-side-out vesicles and because of the disruption of membrane and enzyme integrity.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3