The avian lung: is there an aerodynamic expiratory valve?

Author:

Brown R,Kovacs C,Butler J,Wang N,Lehr J,Banzett R

Abstract

The unidirectional gas-flow pattern through the avian lung is thought to result from 'aerodynamic valves'; support for this hypothesis lies mainly in the failure to find any evidence for anatomical valves. During expiration, air flows from the caudal air sacs through the major exchange area of the lung, the paleopulmonic parabronchi, instead of bypassing the lungs via the intrapulmonary bronchus. We tested whether the effectiveness of this expiratory flow control mechanism depends on aerodynamic factors, especially convective inertial forces that depend on gas density and flow velocity. In pump-ventilated, anaesthetized geese, a bolus of tracer gas was introduced into both the right and left caudal thoracic air sacs during an end-inspiratory pause. During the first expiration, the rise of tracer levels within the caudal trachea was measured. Valve efficacy was positively correlated with the rate of expiratory gas flow, V·ao (range 8­200 ml s-1). At flows assumed to occur during exercise in geese (V·ao>100 ml s-1), the expiratory valve efficacy was approximately 95 %; it was less effective at lower flows. Surprisingly, the density (rho) of the background gas (rho of He/O2=0.43 g l-1, Ar/O2=1.72 g l-1 or SF6/O2=5.50 g l-1) had no effect on expiratory valving. We suggest two possible mechanisms that might explain this unusual combination of flow dependence without density dependence. (1) If airway geometry changes occurred between experiments with different gases, flow in the vicinity of the expiratory valve may have varied independently from flow measured at the airway opening. (2) Alternatively, valving may depend on dynamic compression of the intrapulmonary bronchus, which could depend mainly on viscous resistance and thus on flow velocity but not gas density.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Respiration;In a Class of Their Own;2023

2. Function of the Avian Respiratory System;Current Perspectives on the Functional Design of the Avian Respiratory System;2023

3. Structure of the Avian Respiratory System;Current Perspectives on the Functional Design of the Avian Respiratory System;2023

4. Perspectives on the Structure and Function of the Avian Respiratory System: Functional Efficiency Built on Structural Complexity;Frontiers in Animal Science;2022-04-13

5. Respiration;Sturkie's Avian Physiology;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3