Oxygen availability and embryonic development in sand snail (Polinices sordidus) egg masses

Author:

Booth D

Abstract

The oxygen transport physiology of sand snail Polinices sordidus egg masses was investigated using oxygen microelectrodes and open-flow respirometry. P. sordidus eggs are laid in a jelly matrix that rapidly absorbs water and swells into a horseshoe-shaped sausage. The average diameter of these sausages is 37 mm. Eggs are enclosed in capsules that are distributed throughout the jelly matrix, but 65 % of the eggs are located within 3 mm of the outer surface. There is no circulatory or canal system within the matrix so all gas exchange between developing embryos and the environment must occur by diffusion through the jelly matrix. Oxygen tension in the outer layer remains moderately high (PO2>10 kPa) throughout incubation but decreases rapidly in more centrally located regions, so that by day 4 embryos in this region are exposed to extremely hypoxic conditions (PO2<1 kPa). This hypoxia limits oxygen consumption of embryos to low levels and appears to slow embryonic development or even to arrest it. From day 4 onwards, the central region gradually become less hypoxic because the hatching of peripherally located embryos causes the outer layers of the jelly matrix to disintegrate and thus reduces the diffusion distance for oxygen between the centrally located embryos and the surrounding sea water. As the oxygen tension rises, development accelerates and the embryos eventually hatch as viable veligers, apparently unharmed by their prolonged exposure to hypoxia.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3