Serotonergic modulation of swimming speed in the pteropod mollusc Clione limacina. III. Cerebral neurons.

Author:

Satterlie R A1,Norekian T P1

Affiliation:

1. Department of Zoology, Arizona State University, Tempe 85287-1501, USA.

Abstract

Swim acceleration in Clione limacina can occur via central inputs to pattern generator interneurons and motor neurons and through peripheral inputs to the swim musculature. In the previous paper, peripheral modulation of the swim muscles was shown to increase wing contractility. In the present paper, central inputs are described that trigger an increase in swim frequency and an increase in motor neuron activity. In dissected preparations, spontaneous acceleration from slow to fast swimming included an increase in the cycle frequency, a baseline depolarization in the swim interneurons and an increase in the intensity of motoneuron firing. Similar effects could be elicited by bath application of 10(-5) mol l-1 serotonin. Two clusters of cerebral serotonin-immunoreactive interneurons were found to produce acceleration of swimming accompanied by changes in neuronal activity. Posterior cluster neurons triggered an increase in swim frequency, depolarization of the swim interneurons, an increase in general excitor motoneuron activity and activation of type 12 interneurons and pedal peripheral modulatory neurons. Cells from the anterior cerebral cluster also increased swim frequency, increased activity in the swim motoneurons and activated type 12 interneurons, pedal peripheral modulatory neurons and the heart excitor neuron. The time course of action of the anterior cluster neurons did not greatly outlast the duration of spike activity, while that of the posterior cluster neurons typically outlasted burst duration. It appears that the two discrete clusters of serotonin-immunoreactive neurons have similar, but not identical, effects on swim neurons, raising the possibility that the two serotonergic cell groups modulate the same target cells through different cellular mechanisms.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3