Changes in motoneuron membrane potential and reflex activity induced by sudden cooling of isolated spinal cords: differences among cold-sensitive, cold-resistant and freeze-tolerant amphibian species.

Author:

Daló N L1,Hackman J C1,Storey K1,Davidoff R A1

Affiliation:

1. Department of Neurology, University of Miami School of Medicine, FL 33101, USA.

Abstract

The effects of sudden cooling of the spinal cord were studied in three species of amphibians--a cold-sensitive tropical toad (Bufo marinus), a cold-resistant, aquatic, hibernating frog (Rana pipiens, northern leopard frog) and a freeze-tolerant frog (Rana sylvatica, wood frog). Ventral root (motoneuron) potentials were recorded from isolated, hemisected spinal cords of each species mounted in a sucrose-gap recording apparatus and superfused with HCO3(-)-buffered Ringer's solution at room temperature (21 degrees C). In the toad, sudden cooling to 6-8 degrees C produced large, sustained motoneuron depolarizations that returned slowly to baseline levels and were accompanied by extensive paroxysmal activity. Larger, but shorter-lasting, motoneuron depolarizations associated with only a limited amount of paroxysmal activity were generated by rapid cooling of the leopard frog spinal cord. Small, brief motoneuron depolarizations followed by a hyperpolarization, or hyperpolarizations not preceded by depolarizations, were seen in cooled wood frog spinal cords. The wood frog displayed a large amount of spontaneous motoneuron activity, but little paroxysmal activity in response to sudden cooling. Following prolonged cooling, rewarming the spinal cords of all three species resulted in motoneuron hyperpolarizations that slowly decayed towards the baseline value. The amplitude of the rewarming-induced response was larger and longer in toad motoneurons than in leopard frog and wood frog motoneurons. At room temperature, a single supramaximal dorsal root stimulus evoked a depolarizing ventral root potential in toad and leopard frog motoneurons that was decreased in amplitude and prolonged when the spinal cords were cooled to 8 degrees C or below. In contrast, at room temperature, the ventral root reflex in the wood frog was followed by a distinct hyperpolarization. Cooling the wood frog spinal cord only slightly reduced the amplitude of the ventral root potential. In contrast, the evoked hyperpolarization was blocked by sudden cooling and also by the addition of dihydro-ouabain to the Ringer's solution. The motoneuron hyperpolarizations induced by sudden cooling in the wood frog were converted to depolarizations when Cl- in the superfusate was replaced with isethionate. The depolarizations elicited by sudden cooling were reduced by the addition of kynurenate in all three species. A dose-response curve generated by short applications of L-glutamate demonstrated that wood frog motoneurons were less sensitive than leopard frog motoneurons to L-glutamate. In summary, three species of amphibians, differing in their adaptations to the temperature of their environments, vary in their responses to sudden reductions in temperature. The relationship of these responses to their environmental adaptations remains to be determined.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An ex vivo preparation of mature mice spinal cord to study synaptic transmission on motoneurons;Journal of Neuroscience Methods;2007-01

2. Motor impairment and neuronal damage following hypothermia in tropical amphibians;International Journal of Experimental Pathology;2006-12-20

3. Activity of common anticonvulsant drugs on spinal seizure-induced by sudden cooling;Progress in Neuro-Psychopharmacology and Biological Psychiatry;2006-09

4. VIABILITY OF GLYCEROL-PRESERVED AND CRYOPRESERVED ANURAN SKIN;In Vitro Cellular & Developmental Biology - Animal;2005

5. Physiology, Biochemistry, and Molecular Biology of Vertebrate Freeze Tolerance;Life in the Frozen State;2004-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3