Coulometric measurement of oxygen consumption during development of marine invertebrate embryos and larvae

Author:

Hoegh-Guldberg O,Manahan D

Abstract

Determining the metabolic rate of larval invertebrates from aquatic habitats is complicated by the problems of small size and the scarcity of suitable measurement techniques. In this study, coulometric respirometry (a new technique for the study of marine embryos and larvae) was used to explore several issues associated with the rate of energy use during embryonic and larval development of marine invertebrates from three phyla. Coulometric respirometry measures rates of oxygen consumption under normoxic conditions by electrochemically replacing the oxygen consumed by organisms during an experiment. This technique is based on the assumption that all electrons consumed by the anodic reactions result in the production of oxygen. We verify this assumption using direct measurements of oxygen production and show that the technique is sensitive enough (1 nmol O2 h-1) to quantify the oxygen consumption of a single individual swimming freely in a relatively large volume (2 ml). Continuous measurements can span days, and embryos in the coulometric respiration chambers develop to the larval stage at normal rates of differentiation. Measurements of metabolic rates were made with the coulometric respirometer during the complete life-span of larvae of three species (asteroid, Asterina miniata; bivalve, Crassostrea gigas; echinoid, Dendraster excentricus). For these species, metabolic power equations had mass exponents near unity (0.9­1.1), showing that metabolic rate scales isometrically with mass during larval growth. Metabolic rates were independent of the concentration of larvae used in the respirometer chambers for a range of larval concentrations from 4 to 400 larvae ml-1 (coulometric respirometer) and from 241 to 809 larvae ml-1 (polarographic oxygen sensor). Metabolic rates were measured using coulometric respirometry and two other commonly used techniques, polarographic oxygen sensors and Winkler's titration. Polarographic oxygen sensors in small, sealed chambers (100 µl) consistently gave the lowest values (by as much as 80 %) for the asteroid, echinoid and molluscan larvae. By comparison, rates of oxygen consumption measured using coulometric respirometry and Winkler's titration (to measure the change in oxygen concentration over time) were similar and consistently higher. Although the polarographic oxygen sensor is the most widely used method for measuring the metabolism of small animals in sealed 100­1000 µl chambers, it appears that the metabolism of some larvae is adversely affected by the conditions within these respirometers.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3