Basolateral transport of taurine in epithelial cells of isolated, perfused Mytilus californianus gills.

Author:

Neufeld D S1,Wright S H1

Affiliation:

1. Department of Physiology, College of Medicine, University of Arizona, Tucson 85724.

Abstract

We found that the basolateral surface of the gill epithelium of the marine mussel Mytilus californianus possesses a carrier-mediated process capable of concentrating taurine within epithelial cells. We used retrograde perfusion of gill sections to demonstrate the kinetics, specificity and ion-dependence of taurine transport. [3H]taurine was concentrated relative to a space marker ([14C]mannitol); this accumulation was blocked by the inclusion of 10 mmol l-1 unlabeled taurine in the perfusate. The drop in [3H]taurine uptake at increasing concentrations of unlabeled taurine was fitted to Michaelis-Menten kinetics and indicated a basolateral process with a taurine concentration at which transport is half-maximal (Kt) of 35.3 mumol l-1 and a maximal flux (Jmax) of 0.35 mumol g-1 wet mass h-1. Taurine accumulation on the apical surface had a higher affinity (Kt = 9.5 mumol l-1) and a higher maximum rate of transport (Jmax = 1.23 mumol g-1 h-1). Basolateral transport was inhibited by inclusion in the perfusate of 1 mmol l-1 of another beta-amino acid (beta-alanine), but not by inclusion of alpha-alanine, glutamic acid or betaine. The dependence of basolateral taurine transport on Na+ (when replaced with N-methyl-D-glucamine) was sigmoidal with an apparent Hill coefficient of 2.3, indicating that more than one Na+ is necessary for the transport of each taurine molecule. Complete substitution of Cl- in bathing media reduced taurine accumulation by 90% and 70% on the apical and basolateral surfaces, respectively. Taurine accumulation on both surfaces was reduced by only 20% when Cl- was reduced from 496 to 73 mmol l-1, suggesting that taurine uptake is not significantly influenced by the changes in Cl- concentration accompanying the salinity fluctuations normally encountered by mussels. We estimate that the various Na+ and Cl- gradients naturally encountered by epithelial cells are capable of providing ample energy to maintain a high intracellular concentration of taurine. We suggest that the ability of epithelial cells to accumulate taurine across the basolateral surface from the hemolymph plays a significant role in the intracellular regulation of this important osmolyte and may effect osmolality-dependent changes in the intracellular concentration of taurine.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3