The EMG-force relationship of the cat soleus muscle and its association with contractile conditions during locomotion.

Author:

Guimaraes A C1,Herzog W1,Allinger T L1,Zhang Y T1

Affiliation:

1. Human Performance Laboratory, University of Calgary, Alberta, Canada.

Abstract

The relationship between force and electromyographic (EMG) signals of the cat soleus muscle was obtained for three animals during locomotion at five different speeds (154 steps), using implanted EMG electrodes and a force transducer. Experimentally obtained force-IEMG (= integrated EMG) relationships were compared with theoretically predicted instantaneous activation levels calculated by dividing the measured force by the predicted maximal force that the muscle could possibly generate as a function of its instantaneous contractile conditions. In addition, muscular forces were estimated from the corresponding EMG records exclusively using an adaptive filtering approach. Mean force-IEMG relationships were highly non-linear but similar in shape for different cats and different speeds of locomotion. The theoretically predicted activation-time plots typically showed two peaks, as did the IEMG-time plots. The first IEMG peak tended to be higher than the second one and it appeared to be associated with the initial priming of the muscle for force production at paw contact and the peak force observed early during the stance phase. The second IEMG peak appeared to be a burst of high muscle activation, which might have compensated for the levels of muscle length and shortening velocity that were suboptimal during the latter part of the stance phase. Although it was difficult to explain the soleus forces on the basis of the theoretically predicted instantaneous activation levels, it was straightforward to approximate these forces accurately from EMG data using an adaptive filtering approach.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3