M-CSF-induced macropinocytosis increases solute endocytosis but not receptor-mediated endocytosis in mouse macrophages

Author:

Racoosin E.L.1,Swanson J.A.1

Affiliation:

1. Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, MA 02115.

Abstract

Although coated vesicles can mediate both solute and receptor-mediated endocytosis, there are other kinds of endocytic vesicles that contribute to these processes. The relative contributions of these other organelles, particularly regarding solute influx, remains unsettled. Here we describe a physiological uncoupling of solute and receptor-mediated endocytosis that occurs during growth factor-stimulated macropinocytosis. We examined how recombinant human macrophage colony-stimulating factor (rM-CSF), which rapidly stimulates solute endocytosis in murine bone marrow-derived macrophages, affected ligand internalization via receptor-mediated endocytosis. Although rM-CSF stimulated internalization and accumulation of Lucifer Yellow (LY), a probe for solute endocytosis, it had no effect on accumulation of fluorescent acetylated low-density lipoprotein (acLDL), a ligand for the macrophage scavenger receptor, or on the endocytosis of 125I-labelled diferric transferrin. Video microscopy revealed that rM-CSF immediately induced active cell ruffling and the formation of phase-bright macropinosomes. Nocodazole pretreatment of macrophages inhibited both ruffling and macropinocytosis. Macropinosomes were fluorescently labelled by incubating macrophages briefly with probes for both solute endocytosis (fluorescent dextrans) and ligand endocytosis (fluorescein-labelled transferrin or diI-labelled acLDL). Macrophages incubated for one or two minutes formed macropinosomes that were labelled predominantly with the fluorescent solute probes but with little or none of the ligand probes; the latter were localized within smaller pinosomes. When cells pulsed with the fluorescent probes were washed and chased for an additional two minutes, solute and ligand probes occasionally co-localized in macropinosomes. Nocodazole inhibited macropinocytosis with little apparent effect on endocytosis via smaller vesicles. These experiments show that macropinosome formation is dependent on microtubules and also that the macropinosomes induced by rM-CSF are solute-rich and receptor-poor. Macropinosomes differ from coated vesicles in these respects, and therefore provide a physiologically regulated mechanism for uncoupling solute and receptor-mediated endocytosis.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3