Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures

Author:

Beresford J.N.1,Bennett J.H.1,Devlin C.1,Leboy P.S.1,Owen M.E.1

Affiliation:

1. Nuffield Department of Orthopaedic Surgery, University of Oxford, England, UK.

Abstract

The differentiation of adipocytic and osteogenic cells has been investigated in cultures of adult rat marrow stromal cells. Adipocytic differentiation was assessed using morphological criteria, changes in expression of procollagen mRNAs, consistent with a switch from the synthesis of predominantly fibrillar (types I and III) to basement membrane (type IV) collagen, and the induction of expression of aP2, a specific marker for differentiation of adipocytes. Osteogenic differentiation was assessed on the basis of changes in the abundance of the mRNAs for the bone/liver/kidney isozyme of alkaline phosphatase and the induction of mRNAs for bone sialoprotein and osteocalcin. In the presence of foetal calf serum and dexamethasone (10(−8) M) there was always differentiation of both adipocytic and osteogenic cells. When the steroid was present throughout primary and secondary culture the differentiation of osteogenic cells predominated. Conversely, when dexamethasone was present in secondary culture only, the differentiation of adipocytes predominated. When marrow stromal cells were cultured in the presence of dexamethasone in primary culture and dexamethasone and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3; 10(−8) M) in secondary culture, the differentiation of adipocytes was inhibited whereas the differentiation of osteogenic cells was enhanced, as assessed by an increase in expression of osteocalcin mRNA. The results, therefore, demonstrate an inverse relationship between the differentiation of adipocytic and osteogenic cells in this culture system and are consistent with the possibility that the regulation of adipogenesis and osteogenesis can occur at the level of a common precursor in vivo.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 480 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3