A cell surface-associated centrosomal layer of microtubule-organizing material in the inner pillar cell of the mouse cochlea

Author:

Tucker J.B.1,Paton C.C.1,Richardson G.P.1,Mogensen M.M.1,Russell I.J.1

Affiliation:

1. School of Biological and Medical Sciences, University of St Andrews, Fife, Scotland.

Abstract

This investigation provides evidence that pericentriolar material is divorced from the immediate vicinities of centrioles and becomes functionally associated with the plasmalemma during the differentiation of a mammalian cell type. Such events occur prior to the assembly of large transcellular microtubule bundles in columnar epithelial cells called inner pillar cells in the mouse organ of Corti. The microtubules do not radiate from a typical centrosome and its centrioles. They elongate from a microtubule-organizing centre (MTOC), which is deployed as a subapical cell surface-associated layer in each cell. Most of the dense material of this layer, and the tops of most of the microtubules, are initially concentrated around the sides of a cell about 1 microns below its apical surface. In addition, a pair of centrioles is located above the layer, which acts as if it is a pericellular concentration of the pericentriolar material of a modified centrosome. Although microtubule nucleation takes place in a centrosome-like region, 13 protofilament fidelity is not exercised. Most of the microtubules have 15 protofilaments. Microtubule assembly progresses in these cells after the organ of Corti has been isolated for in vitro culture. However, large numbers of microtubules elongate from pericentriolar material juxtaposed against the centrioles. Hence, there is some reversion by the centrosomes of cultured cells to the operational configuration regarded as typical for animal tissue cells in general.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3