Prostaglandin catabolism in Spodoptera exigua, a lepidopteran insect

Author:

Ahmed Shabbir1ORCID,Kim Yonggyun1ORCID

Affiliation:

1. Department of Plant Medicals, Andong National University, Andong 36729, Korea

Abstract

Several prostaglandins (PGs) and PG-synthesizing enzymes have been identified from insects. PGs mediate cellular and humoral immune responses. However, uncontrolled and prolonged immune responses might have adverse effects on survival. PG catabolism in insects has not been reported. Here, using a transcriptomic analysis, we predicted two PG-degrading enzymes, PG dehydrogenase (SePGDH) and PG reductase (SePGR), in Spodoptera exigua, a lepidopteran insect. SePGDH and SePGR expression levels were upregulated after immune challenge. However, their expression peaks occurred after those of PG biosynthesis genes such as PGE2 synthase or PGD2 synthase. SePGDH and SePGR expression levels were upregulated after injection with PGE2 or PGD2. In contrast, such upregulated expression was not detected after injection with leukotriene B4, an eicosanoid inflammatory mediator. RNA interference (RNAi) using double-stranded RNAs specific to SePGDH or SePGR suppressed their expression levels. The RNAi treatment resulted in an excessive and fatal melanization of larvae even after a non-pathogenic bacterial infection. Phenoloxidase (PO) activity mediating the melanization in larval plasma was induced by bacterial challenge or PGE2 injection. Although the induced PO activity decreased after 8 h in control, larvae treated with dsRNAs specific to PG-degrading enzyme genes kept the high PO activities for a longer period compared to control larvae. These results suggest that SePGDH and SePGR are responsible for PG degradation at a late phase of immune responses.

Funder

National Research Foundation of Korea

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3