An experimental study of the interaction between the soil amoeba Naegleria gruberi and a glass substrate during amoeboid locomotion

Author:

Preston T.M.,King C.A.

Abstract

The amoeboid locomotion of the soil protozoon Naegleria gruberi has been studied using reflexion-interference microscopy. Two types of contact are made with a planar glass substrate. One, formed at a considerable distance from the substrate in deionized water (congruent to 100 nm) has been termed ‘associated contact’ and usually involves a considerable surface area (of the order of 100 micrometer2), i.e. about a third of the cell profile. From this broad platform filopodia are produced which form close contacts (‘focal contacts’). In locomotion the area of associated contact is very mobile, in contrast to the focal contacts which, once established, are stable. Focal contact sites are left behind on the glass surface (‘footprints’) when the amoeba moves away. The cell-substrate gap in the associated contact is greatly affected by the ionic strength of the medium and particularly the valency of the cation component. This suggests that long-range forces of attraction play an important role in keeping the amoeba close to a substrate and thus allow the production of filopodia from the ventral surface to form focal contacts.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3