Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox

Author:

Cavalier-Smith T.

Abstract

The 40,000-fold variation in eukaryote haploid DNA content is unrelated to organismic complexity or to the numbers of protein-coding genes. In eukaryote microorganisms, as well as in animals and plants, DNA content is strongly correlated with cell volume and nuclear volume, and with cell cycle length and minimum generation time. These correlations are simply explained by postulating that DNA has 2 major functions unrelated to its protein-coding capacity: (1) the control of cell volume by the number of replicon origins, and (2) the determination of nuclear volume by the overall bulk of the DNA: cell growth rates are determined by the cell volume and by the area of the nuclear envelope available for nucleocytoplasmic transport of RNA, which in turn depends on the nuclear volume and therefore on the DNA content. During evolution nuclear volume, and therefore DNA content, has to be adjusted to the cell volume to allow reasonable growth rates. The great diversity of cell volumes and growth rates, and therefore of DNA contents, among eukaryotes results from a varying balance in different species between r-selection, which favours small cells and rapid growth rates and therefore low DNA C-values, and K-selection which favours large cells and slow growth rates and therefore high DNA C-values. In multicellular organisms cell size needs to vary in different tissues: size differences between somatic cells result from polyteny, endopolyploidy, or the synthesis of nucleoskeletal RNA. Conflict between the need for large ova and small somatic cells explains why lampbrush chromosomes, nurse cells, chromatin diminution and chromosome elimination evolved. Similar evolutionary considerations clarify the nature of polygenes, the significance of the distribution of haploidy, diploidy and dikaryosis in life cycles and of double fertilization in angiosperms, and of heteroploidy despite DNA constancy in cultured cells, and other puzzles in eukaryote chromosome biology. Eukaryote DNA can be divided into genic DNA (G-DNA), which codes for proteins (or serves as recognition sites for proteins involved in transcription, replication and recombination), and nucleoskeletal DNA (S-DNA) which exists only because of its nucleoskeletal role in determining the nuclear volume (which it shares with G-DNA, and performs not only directly, but also indirectly by coding for nucleoskeletal RNA). Mechanistic and evolutionary implications of this are discussed.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3