Data science in cell imaging

Author:

Driscoll Meghan K.1ORCID,Zaritsky Assaf2ORCID

Affiliation:

1. Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA

2. Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Abstract

ABSTRACT Cell imaging has entered the ‘Big Data’ era. New technologies in light microscopy and molecular biology have led to an explosion in high-content, dynamic and multidimensional imaging data. Similar to the ‘omics’ fields two decades ago, our current ability to process, visualize, integrate and mine this new generation of cell imaging data is becoming a critical bottleneck in advancing cell biology. Computation, traditionally used to quantitatively test specific hypotheses, must now also enable iterative hypothesis generation and testing by deciphering hidden biologically meaningful patterns in complex, dynamic or high-dimensional cell image data. Data science is uniquely positioned to aid in this process. In this Perspective, we survey the rapidly expanding new field of data science in cell imaging. Specifically, we highlight how data science tools are used within current image analysis pipelines, propose a computation-first approach to derive new hypotheses from cell image data, identify challenges and describe the next frontiers where we believe data science will make an impact. We also outline steps to ensure broad access to these powerful tools – democratizing infrastructure availability, developing sensitive, robust and usable tools, and promoting interdisciplinary training to both familiarize biologists with data science and expose data scientists to cell imaging.

Funder

Council for Higher Education

Ben-Gurion University of the Negev

National Institutes of Health

Lyda Hill Foundation

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3