Celsr1 suppresses Wnt5a-mediated chemoattraction to prevent incorrect rostral migration of facial branchiomotor neurons

Author:

Hummel Devynn1,Becks Alexandria1,Men Hongsheng2,Bryda Elizabeth C.2,Glasco Derrick M.3ORCID,Chandrasekhar Anand1ORCID

Affiliation:

1. University of Missouri 1 Division of Biological Sciences and Bond Life Sciences Center , , Columbia, MO 65211 , USA

2. University of Missouri 2 Department of Veterinary Pathobiology , , Columbia, MO 65211 , USA

3. Bob Jones University 3 Department of Biology , , Greenville, SC 29614 , USA

Abstract

ABSTRACT In the developing hindbrain, facial branchiomotor (FBM) neurons migrate caudally from rhombomere 4 (r4) to r6 to establish the circuit that drives jaw movements. Although the mechanisms regulating initiation of FBM neuron migration are well defined, those regulating directionality are not. In mutants lacking the Wnt/planar cell polarity (PCP) component Celsr1, many FBM neurons inappropriately migrate rostrally into r3. We hypothesized that Celsr1 normally blocks inappropriate rostral migration of FBM neurons by suppressing chemoattraction towards Wnt5a in r3 and successfully tested this model. First, FBM neurons in Celsr1; Wnt5a double mutant embryos never migrated rostrally, indicating that inappropriate rostral migration in Celsr1 mutants results from Wnt5a-mediated chemoattraction, which is suppressed in wild-type embryos. Second, FBM neurons migrated rostrally toward Wnt5a-coated beads placed in r3 of wild-type hindbrain explants, suggesting that excess Wnt5a chemoattractant can overcome endogenous Celsr1-mediated suppression. Third, rostral migration of FBM neurons was greatly enhanced in Celsr1 mutants overexpressing Wnt5a in r3. These results reveal a novel role for a Wnt/PCP component in regulating neuronal migration through suppression of chemoattraction.

Funder

Christopher S. Bond Life Sciences Center, University of Missouri

National Institute of Neurological Disorders and Stroke

University of Missouri - Kansas City and Columbia

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3