Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiatedArabidopsiscells

Author:

Tessadori Federico1,Chupeau Marie-Christine2,Chupeau Yves2,Knip Marijn1,Germann Sophie2,van Driel Roel1,Fransz Paul1,Gaudin Valérie2

Affiliation:

1. Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, BioCentrum Amsterdam, Kruislaan 318, 1098SM Amsterdam, The Netherlands

2. Laboratoire de Biologie Cellulaire, IJPB, INRA, Route de St Cyr, 78026 Versailles Cedex, France

Abstract

Chromocenters in Arabidopsis thaliana are discrete nuclear domains of mainly pericentric heterochromatin. They are characterized by the presence of repetitive sequences, methylated DNA and dimethylated histone H3K9. Here we show that dedifferentiation of specialized mesophyll cells into undifferentiated protoplasts is accompanied by the disruption of chromocenter structures. The dramatic reduction of heterochromatin involves the decondensation of all major repeat regions, also including the centromeric 180 bp tandem repeats. Only the 45S rDNA repeat remained in a partly compact state in most cells. Remarkably, the epigenetic indicators for heterochromatin, DNA methylation and H3K9 dimethylation, did not change upon decondensation. Furthermore, the decondensation of pericentric heterochromatin did not result in transcriptional reactivation of silent genomic elements. The decondensation process was reversible upon prolonged culturing. Strikingly, recondensation of heterochromatin into chromocenters is a stepwise process. Compaction of the tandemly arranged 45S rDNA regions occurs first, followed by the centromeric 180 bp and the 5S rDNA repeats and finally the dispersed repeats, including transposons. The sequence of reassembly seems to be correlated to the size of the repeat domains. Our results indicate that different types of pericentromeric repeats form different types of heterochromatin, which subsequently merge to form a chromocenter.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3