Regional specification of stomatal production by the putative ligand CHALLAH

Author:

Abrash Emily B.1,Bergmann Dominique C.1

Affiliation:

1. Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA

Abstract

The problem of modulating cell fate programs to create distinct patterns and distributions of specialized cell types in different tissues is common to complex multicellular organisms. Here, we describe the previously uncharacterized CHALLAH (CHAL) gene, which acts as a tissue-specific regulator of epidermal pattern in Arabidopsis thaliana. Arabidopsis plants produce stomata, the cellular valves required for gas exchange, in virtually all aerial organs, but stomatal density and distribution differ among organs and along organ axes. Such regional regulation is particularly evident in plants mutant for the putative receptor TOO MANY MOUTHS (TMM), which produce excess stomata in leaves but no stomata in stems. Mutations in CHAL suppress tmm phenotypes in a tissue-specific manner, restoring stomatal production in stems while minimally affecting leaves. CHAL is similar in sequence to the putative stomatal ligands EPF1 and EPF2 and, like the EPFs, can reduce or eliminate stomatal production when overexpressed. However, CHAL and the EPFs have different relationships to TMM and the ERECTA (ER) family receptors. We propose a model in which CHAL and the EPFs both act through ER family receptors to repress stomatal production, but are subject to opposite regulation by TMM. The existence of two such ligand classes provides an explanation for TMM dual functionality and tissue-specific phenotypes.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference30 articles.

1. A Subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana;Berger;Genes Dev.,2000

2. Stomatal development;Bergmann;Annu. Rev. Plant Biol.,2007

3. Stomatal development and pattern controlled by a MAPKK kinase;Bergmann;Science,2004

4. TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems;Bhave;Planta,2009

5. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana;Clough;Plant J.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3