Cytoskeletal rearrangements accompanying salmonella entry into epithelial cells

Author:

Finlay B.B.1,Ruschkowski S.1,Dedhar S.1

Affiliation:

1. Department of Biochemistry, University of British Columbia, Vancouver, Canada.

Abstract

Salmonella bacteria can enter (invade) eukaryotic cells, and exist as intracellular parasites. Confocal, light immunofluorescence and electron microscopy were used to examine various cytoskeletal components of cultured Madin Darby canine kidney (MDCK) and HeLa epithelial cells after infection with Salmonella typhimurium. These bacteria entered and remained within membrane-bound vacuoles and were surrounded by large (5–10 microns) dense structures composed of various cytoskeletal components. These structures consisted of extensive aggregations of polymerized actin, alpha-actinin and tropomyosin above and beside the invading bacterium in both epithelial cell lines. These structures were evident soon after bacterial addition (maximal at 20 min for HeLa cells, 60 min for MDCK cells), and disappeared later in the infection as the cytoskeletal components returned to a more normal distribution after bacterial internalization. Surprisingly, tubulin also aggregated above internalized Salmonella although bacterial entry or penetration through polarized monolayers was not disrupted by the microtubule-inhibiting agent nocadazole (this treatment actually enhanced tubulin accumulation around these organisms). There were little if any rearrangements in intermediate filaments composed of keratin or vimentin. Large amounts of talin also accumulated above and around invading Salmonella, but there was only a minor accumulation of vinculin around a few organisms. Pretreatment of epithelial cells with the microfilament inhibitor cytochalasin D blocked bacterial internalization but did not prevent accumulation of polymerized actin and alpha-actinin directly beneath uninternalized bacteria, yet prevented accumulation of the other cytoskeletal components. These results suggest that Salmonella bind to the surface and trigger a signal in epithelial cells that causes marked rearrangements in various cytoskeletal components, including recruitment of actin filaments and alpha-actinin, which then generates the force necessary for bacterial uptake.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3