Functional expression of the voltage-gated sodium channel, Nav1.7, underlies epidermal growth factor-mediated invasion in human [R1.S1] non-small cell lung cancer cells

Author:

Campbell Thomas M.,Main Martin J.,Fitzgerald Elizabeth M.

Abstract

Various ion channels are expressed in human cancers where they are intimately involved in proliferation, angiogenesis, invasion and metastasis. Expression of functional voltage-gated sodium channels (Nav) is implicated in the metastatic potential of breast, prostate, lung and colon cancer cells. However, the cellular mechanisms that regulate Nav expression in cancer remain largely unknown. Growth factors are attractive candidates; they not only play crucial roles in cancer progression but are also key regulators of ion channel expression and activity in non-cancerous cells. Here, we examine the role of epidermal growth factor receptor (EGFR) signalling and Nav in non-small cell lung carcinoma (NSCLC) cell lines. We show unequivocally, that functional expression of Nav1.7 promotes invasion in H460 NSCLC cells. Inhibition of Nav1.7 activity (tetrodotoxin), or, expression (small interfering RNA), reduces H460 cell invasion by up to 50%. Crucially, non-invasive wild type A549 cells lack functional Nav whereas exogenous over-expression of Nav1.7 is sufficient to promote TTX-sensitive invasion of these cells. EGF/EGFR signalling enhances proliferation, migration and invasion of H460 cells but we find that EGFR-mediated up-regulation of Nav1.7 specifically, is necessary for invasive behaviour in these cells. Examination of Nav1.7 expression at the mRNA, protein and functional levels further reveals that EGF/EGFR signalling via the ERK1/2 pathway controls transcriptional regulation of channel expression to promote cellular invasion. Immunohistochemistry of patient biopsies confirms the clinical relevance of Nav1.7 expression in NSCLC. Thus, Nav1.7 has significant potential as a novel target for therapeutic intervention and/or as a diagnostic/prognostic marker in NSCLC.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3