Author:
Campbell Thomas M.,Main Martin J.,Fitzgerald Elizabeth M.
Abstract
Various ion channels are expressed in human cancers where they are intimately involved in proliferation, angiogenesis, invasion and metastasis. Expression of functional voltage-gated sodium channels (Nav) is implicated in the metastatic potential of breast, prostate, lung and colon cancer cells. However, the cellular mechanisms that regulate Nav expression in cancer remain largely unknown. Growth factors are attractive candidates; they not only play crucial roles in cancer progression but are also key regulators of ion channel expression and activity in non-cancerous cells. Here, we examine the role of epidermal growth factor receptor (EGFR) signalling and Nav in non-small cell lung carcinoma (NSCLC) cell lines. We show unequivocally, that functional expression of Nav1.7 promotes invasion in H460 NSCLC cells. Inhibition of Nav1.7 activity (tetrodotoxin), or, expression (small interfering RNA), reduces H460 cell invasion by up to 50%. Crucially, non-invasive wild type A549 cells lack functional Nav whereas exogenous over-expression of Nav1.7 is sufficient to promote TTX-sensitive invasion of these cells. EGF/EGFR signalling enhances proliferation, migration and invasion of H460 cells but we find that EGFR-mediated up-regulation of Nav1.7 specifically, is necessary for invasive behaviour in these cells. Examination of Nav1.7 expression at the mRNA, protein and functional levels further reveals that EGF/EGFR signalling via the ERK1/2 pathway controls transcriptional regulation of channel expression to promote cellular invasion. Immunohistochemistry of patient biopsies confirms the clinical relevance of Nav1.7 expression in NSCLC. Thus, Nav1.7 has significant potential as a novel target for therapeutic intervention and/or as a diagnostic/prognostic marker in NSCLC.
Publisher
The Company of Biologists
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献