Redefining the structure of the hair follicle by 3D clonal analysis

Author:

Sequeira Inês1,Nicolas Jean-François1

Affiliation:

1. Unité de Biologie moléculaire du Développement, Institut Pasteur, 25 rue du Docteur Roux, F-75724 Paris Cedex 15, France and CNRS, URA2578, F-75015 Paris, France

Abstract

The hair follicle (HF) is a multi-tissue mini-organ that self-renews periodically. However, the cellular organisation of this much-studied model is not fully understood. The structures of the outer layer and of the bulb, which ensures HF growth, have not been completely established. To clarify these points, we have conducted in vivo clonal analyses with 3D imaging in mice. The upper two-thirds of the HF outer layer consists of two clonally unrelated groups of cells that exhibit different modes of growth. They correspond to the basal outer root sheath (ORS) and the companion layer (Cp). The basal ORS has an unusual anisotropic mode of growth from a suprabulbar zone, which we named the privileged proliferation zone. The Cp has a stem/transient-amplifying mode of growth and is shown to be an HF internal structure. Furthermore, we describe an additional element, the bulb outer layer, which is contiguous and shares markers (e.g. Lgr5) with the basal ORS but is formed by a separate lineage that belongs neither to the ORS nor Cp lineage. It represents a novel element with proximal cells that are contiguous with the germinative layer in the bulb. In reference to its shape and position we named it the lower proximal cup (LPC). These clonal hierarchies reveal a novel model of HF organisation and growth based on two major entities: the basal ORS and the LPC plus the seven internal layers.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3