Sensorimotor control of swimming Polypterus senegalus is preserved during sensory deprivation conditions across altered environments

Author:

Hainer Jeffrey1ORCID,Lutek Keegan2ORCID,Maki Hailey1,Standen Emily M.1ORCID

Affiliation:

1. University of Ottawa 1 Department of Biology , , 30 Marie-Curie Private, Ottawa, ON , Canada , K1N 6N5

2. Villanova University 2 Department of Biology , , 800 Lancaster Avenue, Villanova, PA 19085 , USA

Abstract

ABSTRACT Control of locomotion involves the interplay of sensory signals and motor commands. Sensory information is essential for adjusting locomotion in response to environmental changes. A previous study using mathematical modelling of lamprey swimming has shown that, in the absence of sensory feedback, increasing fluid viscosity constrains swimming kinematics, limiting tail amplitude and body wavelength, resulting in decreased swimming speed. In contrast, previous experiments with Polypterus senegalus reported increased magnitude swimming kinematics (increased body curvature, body wave speed and frequency, and pectoral fin frequency) in high viscosity water suggesting that sensory information is used to adjust swimming form. It is not known what sensory systems are providing the necessary information to respond to these environmental changes. We tested the hypothesis that lateral line and visual input are responsible for the sensory-driven increase in swimming kinematics in response to experimentally increased fluid viscosity. The kinematics of five P. senegalus were recorded in two different viscosities of water while removing lateral line and visual sensory feedback. Unlike the mathematical model devoid of sensory feedback, P. senegalus with lateral line and/or visual senses removed did not reduce the magnitude of swimming kinematic variables, suggesting that additional sensory feedback mechanisms are present in these fish to help overcome increased fluid viscosity. Increases in swimming speed when both lateral line and visual sensory feedback were removed suggest that lateral line and visual information may be used to regulate swimming speed in P. senegalus, possibly using an internal model of predictions to adjust swimming form.

Funder

Natural Sciences and Engineering Research Council of Canada

Human Frontiers Science Program

University of Ottawa

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ECR Spotlight – Jeffrey Hainer;Journal of Experimental Biology;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3