Control of the Circadian Rhythm of Activity in the Cockroach

Author:

BRADY JOHN1

Affiliation:

1. Zoological Laboratoy Downing Street, Cambridge; Houghton Poultry Research Station, Houghton, Huntingdon, U.K.

Abstract

1. Since 1955 Harker's work on the control of cockroach activity rhythms by a hormonal clock in the sub-oesophageal ganglion has stood largely unchallenged, but recently Roberts (1966) has questioned several of her claims; in particular he finds it impossible to transfer rhythms by implanting this ganglion. 2. Sub-oesophageal ganglia from rhythmic donors were implanted into 29 headless Periplaneta americana in a variety of ways and three different actographs used. In 2 cases the hosts showed bursts of activity for 2 or 3 days after implantation, roughly coincident with the donor's previous rhythm; a further 8 implanted animals showed rather uncertain signs of an induced rhythm, but the remaimng 19 were all apparently arrhythmic. 3. Cauterization of the neurosecretory cells of the sub-oesophageal ganglion in situ showed that cockroaches can remain rhythmic in the absence of the cells described by Harker (1960c), and probably in the absence of all cells in this ganglion which are stained by paraldehyde-fuchsin. 4. Implantation of abdominal ganglia plus their respective neurohaemal organs (Brady & Maddrell, 1967) did not elicit rhythms in eight headless hosts. 5. Cutting the circum-oesophageal commissures, or post-sub-oesophageal ganglion connectives, like beheading, appears to interfere seriously with the rhythmic expression of activity; one animal remained apparently rhythmic after this operation, however. 6. Harker's proposal for a second clock (1960b requires that phase-shifts of less than 5 hr. shall be completed within a single activity cycle; this did not occur in the twelve cases observed, phase-shifting being gradual and taking several days before reaching the entrained steady-state. 7. It is suggested that most of the divergent results of Harker, Roberts and Brady could be plausibly correlated if cockroaches have an electrical pace-maker in the brain co-ordinating rather ephemeral neuro-endocrine rhythms in the nerve-cord ganglia.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3