Affiliation:
1. Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
Abstract
Vision is crucial for animals to find prey, locate conspecifics, and to navigate within cluttered landscapes. Animals need to discriminate objects against a visually noisy background. However, the ability to detect spatial information is limited by eye size. In insects, as individuals become smaller, the space available for the eyes reduces, which affects the number of ommatidia, the size of the lens and the downstream information processing capabilities. The evolution of small body size in a lineage, known as miniaturisation, is common in insects. Here, using pattern electroretinography with vertical sinusoidal gratings as stimuli, we studied how miniaturisation affects spatial resolving power and contrast sensitivity in four diurnal ants that live in a similar environment but varied in their body and eye size. We found that ants with fewer and smaller ommatidial facets had lower spatial resolving power and contrast sensitivity. The spatial resolving power was maximum in the largest ant Myrmecia tarsata at 0.60 cycles per degree (cpd) compared to the ant with smallest eyes Rhytidoponera inornata that had 0.48 cpd. Maximum contrast sensitivity (minimum contrast threshold) in M. tarsata (2627 facets) was 15.51 (6.4% contrast detection threshold) at 0.1 cpd, while the smallest ant R. inornata (227 facets) had a maximum contrast sensitivity of 1.34 (74.1% contrast detection threshold) at 0.05 cpd. This is the first study to physiologically investigate contrast sensitivity in the context of insect allometry. Miniaturisation thus dramatically decreases maximum contrast sensitivity and also reduces spatial resolution, which could have implications for visually guided behaviours.
Funder
Australian Research Council
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Reference62 articles.
1. On-transient of insect electroretinogram: its cellular origin;Alawi;Science,1971
2. Visual cognition in social insects;Avarguès-Weber;Annu. Rev. Entomol.,2011
3. Diversity of ants;Brown,2000
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献