Miniaturisation reduces contrast sensitivity and spatial resolving power in ants

Author:

Palavalli-Nettimi Ravindra1,Ogawa Yuri1,Ryan Laura A.1,Hart Nathan S.1,Narendra Ajay1ORCID

Affiliation:

1. Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia

Abstract

Vision is crucial for animals to find prey, locate conspecifics, and to navigate within cluttered landscapes. Animals need to discriminate objects against a visually noisy background. However, the ability to detect spatial information is limited by eye size. In insects, as individuals become smaller, the space available for the eyes reduces, which affects the number of ommatidia, the size of the lens and the downstream information processing capabilities. The evolution of small body size in a lineage, known as miniaturisation, is common in insects. Here, using pattern electroretinography with vertical sinusoidal gratings as stimuli, we studied how miniaturisation affects spatial resolving power and contrast sensitivity in four diurnal ants that live in a similar environment but varied in their body and eye size. We found that ants with fewer and smaller ommatidial facets had lower spatial resolving power and contrast sensitivity. The spatial resolving power was maximum in the largest ant Myrmecia tarsata at 0.60 cycles per degree (cpd) compared to the ant with smallest eyes Rhytidoponera inornata that had 0.48 cpd. Maximum contrast sensitivity (minimum contrast threshold) in M. tarsata (2627 facets) was 15.51 (6.4% contrast detection threshold) at 0.1 cpd, while the smallest ant R. inornata (227 facets) had a maximum contrast sensitivity of 1.34 (74.1% contrast detection threshold) at 0.05 cpd. This is the first study to physiologically investigate contrast sensitivity in the context of insect allometry. Miniaturisation thus dramatically decreases maximum contrast sensitivity and also reduces spatial resolution, which could have implications for visually guided behaviours.

Funder

Australian Research Council

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference62 articles.

1. On-transient of insect electroretinogram: its cellular origin;Alawi;Science,1971

2. Visual cognition in social insects;Avarguès-Weber;Annu. Rev. Entomol.,2011

3. Diversity of ants;Brown,2000

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3