Clinical pathologies of bone fracture modelled in zebrafish

Author:

Tomecka Monika J.12,Ethiraj Lalith P.3,Sánchez Luis M.2,Roehl Henry H.2,Carney Tom J.13ORCID

Affiliation:

1. Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, 138673, Singapore

2. Department of Biomedical Science, Firth Court, Western Bank, The University of Sheffield, Sheffield, S10 2TN, United Kingdom

3. Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University 636921, Singapore

Abstract

Reduced bone quality or mineral density predict both susceptibility to fracture and also attenuate subsequent repair. Bone regrowth is also compromised by bacterial infection, which exacerbates fracture site inflammation. Due to the cellular complexity of fracture repair, as well as genetic and environmental influences, there is a need for models which permit visualisation the fracture repair process under clinically relevant conditions. We have employed a crush fracture of fin rays, coupled with histological and transgenic labelling of cellular responses to characterise the process of fracture repair in zebrafish and show strong similarity to the phased response in humans. We apply our analysis to a zebrafish model of Osteogenesis Imperfecta (OI), which shows reduced bone quality, spontaneous fractures and propensity for non-unions. We find deficiencies in the formation of a bone callus during fracture repair in our OI model, and that clinically employed anti-resorptive bisphosphonates can reduce spontaneous fractures in OI fish and also measurably reduce fracture callus remodelling in WT fish. The csf1ra mutant, which has reduced osteoclast numbers, also shows reduced callus remodelling. Exposure to excessive bisphosphonate, however, disrupts callus repair. Intriguingly, neutrophils initially colonise the fracture site, but are later completely excluded. However when fractures are infected with Staphylococcus, neutrophils are retained, compromising repair. Together, this work elevates the zebrafish bone fracture model and indicates its utility for assessing conditions of relevance to the orthopaedic setting with medium throughput.

Funder

A*GA Agency for Science Technology and Research

Lee Kong Chian School of Medicine, Nanyang Technological University

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3