Talin distribution and phosphorylation in thrombin-activated platelets

Author:

Bertagnolli M.E.1,Locke S.J.1,Hensler M.E.1,Bray P.F.1,Beckerle M.C.1

Affiliation:

1. Department of Biology, University of Utah, Salt Lake City 84112.

Abstract

We have previously demonstrated that the subcellular distribution of the adhesion plaque protein, talin, changes dramatically in human platelets in response to platelet activation (Beckerle et al., J. Cell Biol. 109, 3333–3346, 1989). Talin is uniformly distributed throughout the cytoplasm of resting platelets. However, when platelets are stimulated to become activated and adhesive, a significant amount of the talin population rapidly redistributes to a peripheral, submembranous location. In the present study we have examined talin phosphorylation and proteolytic cleavage as possible mechanisms by which talin's subcellular distribution could be regulated in platelets. We have found that thrombin activation of platelets leads to a fourfold increase in talin phosphorylation. Proteolytic cleavage of talin, however, is not detected in washed platelets activated with thrombin for as long as 30 minutes. Because talin moves to a submembranous location upon platelet activation and has been shown to interact with integrins in vitro, we also investigated whether the major platelet integrin, GPIIb-IIIa, is required for talin redistribution. Using Glanzmann thrombasthenic platelets, which are deficient in GPIIb-IIIa, we found that talin redistribution occurs even in the absence of GPIIb-IIIa. Collectively, our studies suggest that neither proteolytic cleavage of talin nor interactions between talin and GPIIb-IIIa is required for the regulated redistribution of talin in thrombin-activated platelets. Phosphorylation of talin in response to thrombin activation may, however, be one mechanism utilized by platelets to regulate talin distribution and function in human platelets.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3