Autoantibodies to a novel cell cycle-regulated protein that accumulates in the nuclear matrix during S phase and is localized in the kinetochores and spindle midzone during mitosis

Author:

Casiano C.A.1,Landberg G.1,Ochs R.L.1,Tan E.M.1

Affiliation:

1. W. M. Keck Autoimmune Disease Center, Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037.

Abstract

We have employed human autoantibodies to characterize a novel cell cycle-regulated nuclear protein, provisionally designated p330d (doublet polypeptide of 330 kDa). The expression and intracellular distribution of this protein was followed throughout the cell cycle using immunofluorescence microscopy, laser confocal microscopy, immunoelectron microscopy and flow cytometry. p330d was expressed only in proliferating cells and began accumulating in the nucleus during early S phase. The protein reached maximum expression levels during G2/M. In situ extractions with detergent, salt and nucleases failed to abolish the nuclear staining of interphase cells, suggesting a tight binding of p330d to the nuclear matrix during interphase. p330d was concentrated in the kinetochores during prophase but was relocated to the spindle midzone at the onset of anaphase. By late telophase, it was localized predominantly in the intercellular bridge regions flanking the midbody and disappeared gradually as the daughter cells separated. Immunoblotting analysis showed that the autoimmune sera recognized a doublet of 330 kDa, and affinity-purified antibodies from this doublet reproduced the fluorescence staining pattern of the whole serum. We propose that p330d is a novel member of the class of ‘chromosomal passenger’ proteins, which are associated transiently with centromeres during early mitosis and are then redistributed to other sites of the mitotic apparatus after the metaphase/anaphase transition. Possible in vivo functions for p330d and related proteins might include roles in centromere/kinetochore maturation and assembly, chromosome segregation, central spindle stabilization and cytokinesis.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3