Regulated and constitutive secretion of distinct molecular forms of acetylcholinesterase from PC12 cells

Author:

Schweitzer E.S.1

Affiliation:

1. Department of Anatomy and Cell Biology, UCLA Medical School.

Abstract

PC12 cells secrete the enzyme acetylcholinesterase (AChE) while at rest, and increase the overall rate of this secretion 2-fold upon depolarization. This behavior is different from the release of other markers by the constitutive or regulated secretory pathways in PC12 cells. Both the resting and stimulated release of AChE are unchanged after treatment with a membrane-impermeable esterase inhibitor, demonstrating that it represents true secretion and not shedding from the cell surface. The stimulation release of AChE is Ca(2+)-dependent, while the unstimulated release is not. Analysis of the molecular forms of AChE secreted by PC12 cells indicates that the release of AChE actually involves two concurrent but independent secretory processes, and that the G4 form of the enzyme is secreted constitutively, while both the G2 and G4 forms are secreted in a regulated manner, presumably from regulated secretory vesicles. Compared with other regulated secretory proteins, a much smaller fraction of cellular AChE is secreted, and the intracellular localization of this enzyme differs from that of other regulated secretory proteins. The demonstration that a cell line that exhibits regulated secretion of acetylcholine (ACh) is also capable of regulated secretion of AChE provides additional evidence for the existence of multiple regulated secretory pathways within a single cell. Moreover, there appears to be a selective packaging of different molecular forms of AChE into the regulated versus the constitutive secretory pathway. Both the specificity of sorting of AChE and the regulation of its secretion suggest that AChE may play a more dynamic role in synaptic function than has been recognized previously.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3