S1P1 inhibits sprouting angiogenesis during vascular development

Author:

Shoham Adi Ben1,Malkinson Guy2,Krief Sharon1,Shwartz Yulia1,Ely Yona2,Ferrara Napoleone3,Yaniv Karina2,Zelzer Elazar1

Affiliation:

1. Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel

2. Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel

3. Genentech, South San Francisco, CA 94080, USA

Abstract

Coordination between the vascular system and forming organs is essential for proper embryonic development. The vasculature expands by sprouting angiogenesis, during which tip cells form filopodia that incorporate into capillary loops. Although several molecules, such as vascular endothelial growth factor A (Vegfa), are known to induce sprouting, the mechanism that terminates this process to ensure neovessel stability is still unknown. Sphingosine-1-phosphate receptor 1 (S1P1) has been shown to mediate interaction between endothelial and mural cells during vascular maturation. In vitro studies have identified S1P1 as a pro-angiogenic factor. Here, we show that S1P1 acts as an endothelial cell (EC)-autonomous negative regulator of sprouting angiogenesis during vascular development. Severe aberrations in vessel size and excessive sprouting found in limbs of S1P1-null mouse embryos before vessel maturation imply a previously unknown, mural cell-independent role for S1P1 as an anti-angiogenic factor. A similar phenotype observed when S1P1 expression was blocked specifically in ECs indicates that the effect of S1P1 on sprouting is EC-autonomous. Comparable vascular abnormalities in S1p1 knockdown zebrafish embryos suggest cross-species evolutionary conservation of this mechanism. Finally, genetic interaction between S1P1 and Vegfa suggests that these factors interplay to regulate vascular development, as Vegfa promotes sprouting whereas S1P1 inhibits it to prevent excessive sprouting and fusion of neovessels. More broadly, because S1P, the ligand of S1P1, is blood-borne, our findings suggest a new mode of regulation of angiogenesis, whereby blood flow closes a negative feedback loop that inhibits sprouting angiogenesis once the vascular bed is established and functional.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3