Affiliation:
1. Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL 33149, USA
2. Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
Abstract
SUMMARYParacellular permeability and absorptive water flux across the intestine of the euryhaline killifish were investigated using in vitro gut sac preparations from seawater- and freshwater-acclimated animals. The permeability of polyethylene glycol (PEG), a well-established paracellular probe, was measured using trace amounts of radiolabelled oligomers of three different molecular sizes (PEG-400, PEG-900 and PEG-4000) at various times after satiation feeding. All three PEG molecules were absorbed, with permeability declining as a linear function of increasing hydrodynamic radius. Response patterns were similar in seawater and freshwater preparations, though water absorption and PEG-900 permeability were greater in the latter. Despite up to 4-fold variations in absorptive water flux associated with feeding and fasting (highest at 1–3 h, lowest at 12–24 h and intermediate at 1–2 weeks post-feeding), there were no changes in PEG permeability for any size oligomer. When PEG permeability was measured in the opposite direction (i.e. serosal to mucosal) from net water flux, it was again unchanged. HgCl2 (10–3 mol l–1), a putative blocker of aquaporins, eliminated absorptive water flux yet increased PEG-4000 permeability by 6- to 8-fold in both freshwater and seawater preparations. Experimentally raising the serosal osmolality by addition of 300 mmol l–1 mannitol increased the absorptive water flux rate 10-fold, but did not alter PEG permeability. Under these conditions, HgCl2 reduced absorptive water flux by 60% and again increased PEG permeability by 6- to 8-fold in both freshwater and seawater preparations. Clearly, there was no influence of solvent drag on PEG movement. The putative paracellular blocker 2,4,6-triaminopyrimidine (TAP, 20 mmol l–1) had no effect on net water flux or PEG permeability. We conclude that PEG and water move by separate pathways; absorptive water transport probably occurs via a transcellular route in the intestine of Fundulus heteroclitus.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献