Early developmental stages of native populations of Ciona intestinalis under increased temperature are affected by local habitat history

Author:

Clutton Elizabeth A.1ORCID,Alurralde Gaston23ORCID,Repolho Tiago4ORCID

Affiliation:

1. Institute of Marine Sciences, Faculty of Science and Health, University of Portsmouth, Eastney, Portsmouth PO4 9LY, UK

2. Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento Diversidad Biológica y Ecología, Ecología Marina, Av. Velez Sarsfield 299 (X5000JJC), Córdoba, Argentina

3. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecologıa Animal (IDEA), Av. Velez Sarsfield 299 (X5000JJC), Córdoba, Argentina

4. MARE - Centro de Ciências do Mar e do Ambiente (MARE), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal

Abstract

ABSTRACT Temperature modulates marine ectotherm physiology, influencing survival, abundance and species distribution. While native species could be susceptible to ocean warming, thermal tolerance might favour the spread of non-native species. Determining the success of invasive species in response to climate change is confounded by the cumulative, synergistic or antagonistic effects of environmental drivers, which vary at a geographical and temporal scale. Thus, an organism's acclimation or adaptive potential could play an important evolutionary role by enabling or conditioning species tolerance to stressful environmental conditions. We investigated developmental performance of early life stages of the ascidian Ciona intestinalis (derived from populations of anthropogenically impacted and control sites) to an extreme weather event (i.e. marine heatwave). Fertilization rate, embryo and larval development, settlement, metamorphosis success and juvenile heart rate were assessed as experimental endpoints. With the exception of fertilization and heart rates, temperature influenced all analysed endpoints. C. intestinalis derived from control sites were the most negatively affected by increased temperature conditions. By contrast, C. intestinalis from anthropogenically impacted sites showed a positive response to thermal stress, with a higher proportion of larvae development, settlement and metamorphosis success being observed under increased temperature conditions. No differences were observed for heart rates between sampled populations and experimental temperature conditions. Moreover, interaction between temperature and populations was statistically significant for embryo and larvae development, and metamorphosis. We hypothesize that selection resulting from anthropogenic forcing could shape stress resilience of species in their native range and subsequently confer advantageous traits underlying their invasive potential.

Funder

University of Gothenburg

The Company of Biologists

Fundação para a Ciência e Tecnologia

Programa Operacional Regional de Lisboa, Portugal 2020, European Union

Programa MAR2020

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3