Cellular mechanisms underlying Pax3-related neural tube defects and their prevention by folic acid

Author:

Sudiwala Sonia1,Palmer Alexandra1,Massa Valentina1,Burns Alan J.1,Dunlevy Louisa P. E.1,De Castro Sandra C. P.1,Savery Dawn1,Leung Kit-Yi1,Copp Andrew J.1ORCID,Greene Nicholas D. E.1ORCID

Affiliation:

1. UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK

Abstract

Neural tube defects (NTDs), including spina bifida and anencephaly, are among the most common birth defects worldwide but the underlying genetic and cellular causes are not well understood. Some NTDs are preventable by supplemental folic acid. However, the protective mechanism is unclear despite widespread use of folic acid supplements and implementation of food fortification in many countries. Pax3 mutant (splotch; Sp2H) mice provide a model in which NTDs are preventable by folic acid and exacerbated by maternal folate deficiency. Here, we found that cell proliferation was diminished in the dorsal neuroepithelium of mutant embryos, corresponding to the region of abolished Pax3 function. This was accompanied by premature neuronal differentiation in the prospective midbrain. Contrary to previous reports, we did not find evidence that increased apoptosis could underlie failed neural tube closure in Pax3 mutant embryos, nor did inhibition of apoptosis prevent NTDs. These findings suggest that Pax3 functions to maintain the neuroepithelium in a proliferative, undifferentiated state allowing neurulation to proceed. NTDs in Pax3 mutants were not associated with abnormal abundance of specific folates, nor prevented by formate, a one-carbon donor to folate metabolism. Supplemental folic acid restored proliferation in the cranial neuroepithelium. This effect was mediated by enhanced progression of the cell cycle from S- to G2-phase, specifically in the Pax3-mutant dorsal neuroepithelium. We propose that the cell cycle-promoting effect of folic acid compensates for loss of Pax3 and thereby prevents cranial NTDs.

Funder

Medical Research Council

Wellcome Trust

Great Ormond Street Hospital Charity

Newlife The Charity for Disabled Children

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3