Mechanisms of Body-Temperature Regulation in Honeybees, Apis Mellifera: II. Regulation of Thoracic Temperature at High Air Temperatures

Author:

HEINRICH BERND1

Affiliation:

1. Division of Entomology and Parasitology, University of California, Berkeley, CA 94720

Abstract

1. Honeybees could remain in continuous free flight at extremely high air temperatures (up to at least 46 °C). 2. The metabolic rate in free flight, 80–85 ml O2g body weight−1 h−1, was independent of air temperature (TA) over a span of at least 22 °C. 3. The bees' ability to fly at high TA was due to their ability to maintain thoracic temperature (TTh) near TA despite prodigious rates of heat production. Mechanisms of preventing TTh from overheating at high TA were investigated. 4. Bees in flight at high TA regurgitated fluid from their honeycrop and large droplets sometimes spread over the anterior portion of the thorax. 5. Bees without the first two sets of legs, or without a ‘tongue’, maintained as low TH and TTh as intact bees. 6. The abdomen serves only a minor function as a heat exchanger. In tethered bees, heating of the thorax to 45–50 °C resulted in significant, yet relatively little, temperature increase of the abdomen above that of dead or non heat-stressed animals. Similarly, in free flight abdominal temperatures (TAb) were close to TA at all TA. 7. Thoracic heating to near lethal temperatures did not result in droplet extrusion from the mouth nor in significant physiologically facilitated heat transfer to the head. Furthermore, it resulted in no, or in relatively small, changes in pulsation of the aorta and the heart. 8. However, the bees prevented the head from overheating, and the head served as a heat sink for excess heat from the thorax. Keeping TH < TA resulted in keeping TTh near TA. 9. It is concluded that during flight at high TA regulation of TH by evaporative cooling is the primary mechanism of reducing TTh.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3