GRAVIRESPONSES IN PARAMECIUM CAUDATUM AND DIDINIUM NASUTUM EXAMINED UNDER VARIED HYPERGRAVITY CONDITIONS

Author:

Bräucker R,Machemer-Röhnisch S,Machemer H

Abstract

The swimming behaviours of two species of ciliates characterized by different mechanosensory and ciliary motor properties were investigated under hypergravity up to 5.4 g. The experiments were designed to examine large numbers of cells using video recording, digital data processing and statistics for the documentation of the rates and orientations of swimming. The gravikinetic responses (change in active swimming rates) were calculated from (1) the velocities of vertical swimming in the gravity field, (2) sedimentation of Ni2+-immobilized cells and (3) the intrinsic rate of propulsion, independent of gravity. Propulsion was determined from the intersection of regression lines of the gravity-dependent upward and downward swimming velocities. The rates of swimming and sedimentation, and consequently the gravikineses, were linear functions of gravitational acceleration. Comparisons of cell populations from different cultures suggest that there is an age-dependent change in gravikinesis. In starved Paramecium caudatum (7-day cultures), the kinetic responses antagonizing sedimentation (negative gravikinesis) increased with acceleration. In Didinium nasutum, negative gravikinesis was documented at 1 g in downward-swimming specimens only, which agrees with the mechanosensory organization of this cell. Hypergravity induced the gravikinesis of Didinium to change sign. In both species, and at all accelerations tested, a neutral gravitaxis was documented. Such behaviour incorporates distinct acceleration-dependent orientational and velocity responses, keeping populations of cells stationary in the gravity field (taxis coefficients close to zero).

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3