THE EFFECTS OF BRANCHIAL CHLORIDE CELL PROLIFERATION ON RESPIRATORY FUNCTION IN THE RAINBOW TROUT ONCORHYNCHUS MYKISS

Author:

Bindon S,Gilmour K,Fenwick J,Perry S

Abstract

The objectives of this study were to induce chloride cell (CC) proliferation on the gill lamellae of rainbow trout Oncorhynchus mykiss and to evaluate the consequences for respiratory function. Chronic elevation of hormone levels was used to induce CC proliferation; fish were injected with a combination of cortisol (8 mg kg-1 intramuscularly every day for 10 days) and ovine growth hormone (2 mg kg-1 intraperitoneally every second day for 10 days). The extent of CC proliferation was quantified using scanning electron microscopy and a two-dimensional analysis. An extracorporeal preparation in combination with environmental hypoxia was used to assess the effects of CC proliferation on respiratory function. Arterial blood was routed from the coeliac artery through an external circuit in which pH (pHa), partial pressure of oxygen (PaO2) and partial pressure of carbon dioxide (PaCO2) were monitored continuously. Environmental hypoxia was imposed by gassing a water equilibration column supplying the experimental chamber with N2. The hormone treatment increased the average CC surface area by 2.7-fold and CC density by 2.2-fold; the combined effect was a fivefold increase in CC fractional area. While the PaO2 values of hormone-treated and control fish were similar at PwO2>12.0 kPa, the arterial O2 tensions of treated fish were significantly lower than those of the control group for PwO2¾12.0 kPa. In comparison with control fish at all environmental O2 tensions, the hormone-treated fish exhibited elevated PaCO2 values and a significant acidosis. The effects of CC proliferation on blood gas variables in hormone-treated fish were accompanied by a significantly elevated ventilation amplitude and a lowered ventilation frequency. The results of this study demonstrated (i) that impairment of respiratory gas transfer coincides with CC proliferation, (ii) that O2 and CO2 transfer are influenced differently and (iii) that partial compensation is achieved through physiological adjustments.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3