Effects of calcium on flagellar movement in the trypanosome Crithidia oncopelti

Author:

Holwill M. E.,McGregor J. L.

Abstract

1. The effects of calcium on the motility of different preparations of flagella from Crithidia oncopelti were studied using stroboscopic and high-speed cine photographic techniques. 2. By varying the concentration of calcium in suspensions of chemically treated samples of the organism it was found that changes occurred in bend shape, wave direction and frequency. 3. Waves on the flagellum of the organisms in vivo possess the unusual ability to propagate from tip to base, but reverse in direction during an avoiding response. In chemically extracted and reactivated preparations tip to base propagation was observed only at low concentrations (less than 10(−4) mol m-3) of calcium ion; at high concentrations base to tip propagation only was seen. In cells treated with ion across membranes, tip to base propagation was seen only in the presence of EGTA; when calcium was added the majority of organisms propagated waves from base to tip. 4. At certain values (ca. 10(−3) mol m-3) of the calcium concentration the wave shape had meander-like characteristics, whereas at higher and lower concentrations it was more sinsoidal. At high calcium concentrations only one wave appeared on the flagellum whereas at low values two or three were observed. 5. A reduction in frequency at high calcium concentrations was probably due to competitive inhibition of magnesium ions. 6. The results suggest that wave reversal in living Crithidia is induced by the release of calcium ions within the flagellum following stimulation of the membrane. In terms of the sliding filament model of flagellar activity the effects of calcium suggest that the ion is effective in modifying the interaction between the spoke head and central sheath and may control the relative direction of microtubular sliding.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3