Lateral inhibition in proneural clusters: cis-regulatory logic and default repression by Suppressor of Hairless

Author:

Castro Brian1,Barolo Scott1,Bailey Adina M.1,Posakony James W.1

Affiliation:

1. Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0349,USA

Abstract

Lateral inhibition, wherein a single cell signals to its neighbors to prevent them from adopting its own fate, is the best-known setting for cell-cell communication via the Notch (N) pathway. During peripheral neurogenesis in Drosophila, sensory organ precursor (SOP) cells arise within proneural clusters (PNCs), small groups of cells endowed with SOP fate potential by their expression of proneural transcriptional activators. SOPs use N signaling to activate in neighboring PNC cells the expression of multiple genes that inhibit the SOP fate. These genes respond transcriptionally to direct regulation by both the proneural proteins and the N pathway transcription factor Suppressor of Hairless [Su(H)], and their activation is generally highly asymmetric; i.e. only in the inhibited(non-SOP) cells of the PNC, and not in SOPs. We show that the substantially higher proneural protein levels in the SOP put this cell at risk of inappropriately activating the SOP-inhibitory genes, even without input from N-activated Su(H). We demonstrate that this is prevented by direct `default'repression of these genes by Su(H), acting through the same binding sites it uses for activation in non-SOPs. We show that de-repression of even a single N pathway target gene in the SOP can extinguish the SOP cell fate. Finally, we define crucial roles for the adaptor protein Hairless and the co-repressors Groucho and CtBP in conferring repressive activity on Su(H) in the SOP. Our work elucidates the regulatory logic by which N signaling and the proneural proteins cooperate to create the neural precursor/epidermal cell fate distinction during lateral inhibition.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3